on laplacian-energy-like invariant and incidence energy
Authors
abstract
for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues $mu_1$, $mu_2$, $dots$, $mu_{n-1}$, $mu_n=0$, and signless laplacian eigenvalues $q_1, q_2,dots, q_n$, the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$. in this paper, we obtain some sharp lower and upper bounds for the laplacian-energy-like invariant and incidence energy of a graph.
similar resources
On Laplacian-energy-like Invariant and Incidence Energy
For a simple connected graph G with n-vertices having Laplacian eigenvalues μ1, μ2, . . . , μn−1, μn = 0, and signless Laplacian eigenvalues q1, q2, . . . , qn, the Laplacian-energy-like invariant(LEL) and the incidence energy (IE) of a graph G are respectively defined as LEL(G) = ∑n−1 i=1 √ μi and IE(G) = ∑n i=1 √ qi. In this paper, we obtain some sharp lower and upper bounds for the Laplacian...
full textA note on the bounds of Laplacian-energy-like-invariant
The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...
full textOn Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
full textAsymptotic incidence energy and Laplacian-energy-like invariant of the Union Jack lattice
The incidence energy I E (G) of a graph G, defined as the sum of the singular values of the incidence matrix of a graph G, is a much studied quantity with well known applications in chemical physics. The Laplacian-energy-like invariant of G is defined as the sum of square roots of the Laplacian eigenvalues. In this paper, we obtain the closed-form formulae expressing the incidence energy and th...
full textComparison between Laplacian--energy--like invariant and Kirchhoff index
For a simple connected graph G of order n, having Laplacian eigenvalues μ1, μ2, . . . , μn−1, μn = 0, the Laplacian–energy–like invariant (LEL) and the Kirchhoff index (Kf) are defined as LEL(G) = ∑n−1 i=1 √ μi and Kf(G) = n ∑n−1 i=1 1 μi , respectively. In this paper, LEL and Kf are compared, and sufficient conditions for the inequality Kf(G) < LEL(G) are established.
full textMy Resources
Save resource for easier access later
Journal title:
transactions on combinatoricsPublisher: university of isfahan
ISSN 2251-8657
volume 4
issue 3 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023